748. N-Oxides and Related Compounds. Part XVI. ${ }^{1}$ Infrared Spectra of 3-Substituted Pyridine 1-Oxides.

By A. R. Katritzky, J. A. T. Beard, and N. A. Coats.

The positions and intensities of ten characteristic bands are recorded and discussed for nineteen 3 -substituted pyridine 1 -oxides. The preparation of several new oxides is described.

Previous Parts have recorded the spectra of 2 - ${ }^{2}$ and 4 -substituted pyridine 1 -oxides; ${ }^{3}$ we now report on some 3 -analogues. For reasons which have been given ${ }^{4}$ the spectra were measured at 0.2 M concentration in purified chloroform in a 0.117 mm . cell and apparent molecular extinction coefficients were recorded. The errors and approximations involved therein have been noted, ${ }^{4}$ as has the reproducibility to be expected on different machines under these conditions. ${ }^{5}$ The infrared spectra of eleven 3 -substituted pyridine 1 -oxides (variously in $\mathrm{CCl}_{4}, \mathrm{CHCl}_{3}, \mathrm{CS}_{2}$, or as mulls) have been discussed by Shindo; ${ }^{6}$ this work is compared with ours below.

The $3000 \mathrm{~cm} .^{-1}$ Region.-The hydrogen-bonded chloroform CH stretching frequency (cf. refs. 1, 2) is found at $3020-2965 \mathrm{~cm} .^{-1}(70-170)\left[2985 \pm 15 \mathrm{~cm} .^{-1}(120 \pm 30)\right] . *$

Ring CC and CN Stretching Frequencies in the $1600-1400 \mathrm{~cm}^{-1}$ Region.-The four bands expected in this region are found (Table 1, cols. 2-5) at 1612-1598 [1605 $\pm 4] \mathrm{cm} .^{-1}$, $1570-1558[1565 \pm 3] \mathrm{cm} .^{-1}, 1490-1468[1480 \pm 6] \mathrm{cm} .^{-1}$, and $1440-1425[1434 \pm 5]$ $\mathrm{cm} .^{-1}$ (except that the final band absorbs at 1417 in the 3 -phenyl-compound). These positions agree reasonably well with those found by Shindo: ${ }^{6}$ 1610-1587, 1573-1538, 1499-1471 and $1456-1427 \mathrm{~cm} .^{-1}$.

The intensities of the first three of these bands depend on the nature of substituent (electron-donor substituents increasing the intensity) but the intensity of the fourth band varies comparatively little (Table 2). These intensity variations have already been discussed and correlated with the symmetry of the particular vibration and the charge distribution in the ring. ${ }^{7}$
$\mathrm{N}^{+}-\mathrm{O}^{-}$Stretching Band.-This is found at $1308-c a .1230 \mathrm{~cm}^{-1}$ (Table 1, col. 6). The intensity is $(185-370)$ [(275 ± 65)]. The position of the band rises in general with increasing electron-acceptor properties of the substituent, but detailed correlation is difficult for the band is split into two components in the methyl-, chloro-, cyano-, and nitro-derivatives and is overlapped by strong substituent absorption in the carbonyl compounds.

CH In-plane Bending Modes.-Of the four possible modes of this type, only one is identified at $1160-1150[1156 \pm 2] \mathrm{cm} .^{-1}$ (Table 1, col. 8). The intensities depend on the electron-donor power of the substituent: OR (390-400) $>\mathrm{Me}(290)>$ unsaturated carbon (220-230) $>$ chloro (70) $>$ strong electron-acceptors (30-45) except that the cyano- (185) and phenyl compound (125) are respectively stronger and weaker than expected. This mode was found by Shindo ${ }^{6}$ at $1191-1153(\mathrm{~m}-\mathrm{s})$ and probably corresponds to that in meta-disubstituted benzenes at $[1157 \pm 5] \mathrm{cm} .{ }^{-1}, 8$ the intensity of which

[^0]
varies with substituents in much the same way. As in the meta-benzenes, this band often shows a shoulder or subsidiary band at higher frequencies (col. 9).

Ring Breathing Mode.-This (col. 9) occurs at 1019—1008 cm. ${ }^{-1}$ (80-190) [1015 ± 2 $\left.\mathrm{cm} .^{-1}(150 \pm 25)\right]$; the corresponding mode occurs at $\left[995 \pm 3 \mathrm{~cm} .^{-1}(20 \pm 15)\right]$ in metabenzenes. ${ }^{8}$ Shindo reported ${ }^{6}$ this band at $1022-1008 \mathrm{~cm} .^{-1}(\mathrm{~m}-\mathrm{s})$.

Out-of-plane CH Bending Frequencies.-Two of these modes are probably represented by the bands listed in Table 1, cols. 10 and 11. The position of the first mode is very variable $997-900[957 \pm 27] \mathrm{cm} .^{-1}$, the intensity is $(30-270)[(110 \pm 55)]$; it probably corresponds to that absorbing at $\left[914 \pm 8 \mathrm{~cm}^{-1}(20 \pm 10)\right]$ for meta-benzenes. The second band of intensity $(15-70)[(40 \pm 15)]$, is found at $844-843 \mathrm{~cm} .^{-1}$ for the alkoxy-compounds (Nos. 1, 2), at $857-853 \mathrm{~cm} .^{-1}$ for the unsaturated esters (Nos. 6-9) and otherwise at 896 $868[884 \pm 9] \mathrm{cm} .^{-1}$; for meta-benzenes the corresponding band absorbs at [836 $\left.\pm 5\right] \mathrm{cm} .^{-1}$ for the compounds with two donor-substituents and at $[880 \pm 11] \mathrm{cm} .{ }^{-1}$ otherwise.

Absorption which sometimes occurs just above the solvent cut-off at $805 \mathrm{~cm} .^{-1}$ is probably a third out-of-plane mode, reported by Shindo ${ }^{6}$ at $817-743 \mathrm{~cm} .^{-1}$. We find

Table 3. Esters.
Found
Quoted

Ester *	Yield	B. p.	mm .	$n_{\text {d }} \dagger$	B. p.	mm.	$n_{\text {d }} \dagger$	Ref.
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{\text {n }}$	81	138.5-139.5 ${ }^{\circ}$	25	1-4984(18.5)	$134{ }^{\circ}$	23	$1 \cdot 4964(25)$	a, b
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{1}$	33	125-127	30	1.4931 (18.5)	131	27	-	b
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {n }}$	68	144	20	$1 \cdot 4950$ (19)	130	11	$1 \cdot 4933(25)$	a, b
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{1}$	57	126	17	$1 \cdot 4950$ (14.5)	110-111	8	-	b
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {s }}$	$50 \ddagger$	101.5	$0 \cdot 3$	1.4816 (16)	-	-	-	
3Py $\cdot \mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{\text {n }}$	45 §	172	25	$1.5504(15)$	-	-	-	
$3 \mathrm{Py} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {n }}$	509	173-174	15	$1 \cdot 5450(17.5)$	-	-	-	

* 3Py denotes 3-pyridyl radical. † Temperature of determination given in parentheses. ${ }^{a}$ Badgett, Provost, Ogg, and Woodward, J. Amer. Chem. Soc., 1945, 67, 1135. b Charront, Harispe, Harispe, and Chevillard, Bull. Soc. chim. France, 1948, 1014. \ddagger Found: C, 66.6; H, 7.5; N, 7.7. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 67 \cdot 0 ; \mathrm{H}, 7 \cdot 3 ; \mathrm{N}, 7.8 \%$. § Found: C, $69 \cdot 0 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 7.5 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 69 \cdot 1 ; \mathrm{H}, 6 \cdot 8 ; \mathrm{N}, 7 \cdot 3 \%$. IT Found: $\mathrm{C}, 70 \cdot 1 ; \mathrm{H}, 7 \cdot 6 ; \mathrm{N}, 7 \cdot 1 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 70 \cdot 2$; H, $7 \cdot 4 ; \mathrm{N}, 6.8 \%$.

Table 4. 3-Substituted pyridine 1-oxides.

Subst.	M. p.	Crystal form	$\begin{aligned} & \text { Yield } \\ & \text { (\%) } \end{aligned}$	Solvent	a	Formula or lit. m. p.	Found (\%) Required (\%)		
							C	H	N
$\mathrm{CO}_{2} \mathrm{Pr}^{\text {n }}$	49-50.5 ${ }^{\circ}$	rhombs	71	Pet.	D, E	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$	59.6	6.2	-
$\mathrm{CO}_{2} \mathrm{Pr}^{1}$	70	cubes	82	EtOAc	-	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$	$59 \cdot 7$ $59 \cdot 5$	$6 \cdot 1$ 6.2	$\overline{7.7}$
							59.7	$6 \cdot 1$	$7 \cdot 7$
$\mathrm{CO}_{2} \mathrm{Bu}^{\text {n }}$	30-33	plates	48	b	D, E	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}$	$62 \cdot 1$	6.6	$6 \cdot 9$
$\mathrm{CO}_{2} \mathrm{~B}$	62-62.5	rhombs	62	EtOAc	D	C	$61 \cdot 5$ $62 \cdot 0$	6.7 6.8	$7 \cdot 2$ $7 \cdot 2$
$\mathrm{CO}_{2} \mathrm{~B}$		rhombs	62	EtOAc	D	C_{1}	61.5	6.7	$7 \cdot 2$
$\mathrm{CO}_{2} \mathrm{Bu}^{\text {s }}$	43-46	-	49	c	D, E	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}$	61.2	6.4	$7 \cdot 3$
$\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{\mathrm{n}}$	89-91	rhombs	70	EtOAc	-	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}$	$63 \cdot 7$	6.6	6.6
							$63 \cdot 7$	6.3	6.8
$\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {n }}$	69-71	rhombs	93	EtOAc	D, E	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}$	$64 \cdot 9$ $65 \cdot 1$	6.8 6.8	6.2 6.3
CN	174-175	-	47	EtOH	-	175-176 ${ }^{\text {d }}$		-	-
Cl	57-58	cubes	80	$\mathrm{C}_{6} \mathrm{H}_{6}$	D	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{ONCl}$	$46 \cdot 6$	3-1	-
							$46 \cdot 3$	$3 \cdot 1$	-
NO_{2}	169-169.5	yellow	40	EtOH	-	\{ $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{~N}_{2}$	43-1	$2 \cdot 6$	-
		needles				\{167-169。	$42 \cdot 9$	$2 \cdot 9$	-
Me	37-38	-	-	,	D, E	33-36 ${ }^{\text {f }}$	-	-	-

- In this column D indicates that the compound was deliquescent, E that the m . p . was determined in an evacuated tube. ${ }^{\circ}$ Distilled, b. p. $146-148^{\circ} / 0.15 \mathrm{~mm} . ;$ Jaffe and Doak, J. Amer. Chem. Soc., 1955, '77, 4441, give b. p. $135-139^{\circ} / 0 \cdot 16 \mathrm{~mm}$., but no m. p. © Distilled, b. p. $180 \cdot 5 / 2 \mathrm{~mm}$. a Jujo, J. Pharm. Soc. Japan, 1946, 66, 21; Chem. Abs., 1951, 45, 6200. © Ochiai and Kaneko, Pharm. Bull. Japan, 1957, 5, 56. ' Hevy and Tsai, J. Amer. Chem. Soc., 1954, 76, 4184. ' Distilled, b. p. $114-$ $115^{\circ} / 1.5 \mathrm{~mm}$. Pet $=$ light petroleum. b. p. $60-80^{\circ}$.
absorption for Nos. 1, 2, 12, 13, 14, 15, 19 at respectively 819 (35), 828 (55), 822 (35), 807 (45), 805 (30), 805 (25), $818 \mathrm{~cm}^{-1}$ (250).

Substituent Bands.-All the remaining bands in the spectra with $\varepsilon_{\mathrm{A}}>10$ of these compounds could be assigned to substituent absorption (the few exceptions are given in footnotes to Table 1). Many of them have been published; cross references are given in col. 12.

Preparation of Compounds.-The following compounds have already been described (Nos. refer to Table 1); Nos. 4, 12, 18; ${ }^{9}$ No. 5; ${ }^{10}$ No. 6; ${ }^{11}$ No. $11 .{ }^{4}$ The other compounds were prepared by standard methods as indicated in the Experimental section.

Experimental

Esters of Nicotinic Acid.-Thionyl chloride (11.9 g .) was added with stirring below 0° to nicotinic acid (12.3 g .) under pyridine (16 c.c., previously dried by successive treatment with KOH pellets and freshly calcined CaO). The whole was then stirred for $1 \frac{1}{2} \mathrm{hr}$. at 100°, the alcohol ($0 \cdot 1 \mathrm{~mole}$) added, and the heating continued for 3 hr . more. The mixture was added to water ($\mathbf{1 6 0}$ c.c.) and just basified with aqueous ammonia ($d 0.088$). Ether-extraction (3×50 c.c.) gave, from the dried $\left(\mathrm{MgSO}_{4}\right)$ extracts, the ester by distillation. Details are given in Table 3.

Esters of β-Pyridylacrylic Acid.-The acid (10 g .), alcohol (25 c.c.), and sulphuric acid (10 c.c.) were heated for 18 hr . at 100°. The mixture was worked up as above. Details of the products are given in Table 3.

Conversion of Pyridines into their N -Oxides.-The pyridine (0.01 mole) in acetic acid (6 c.c.) and 30% aqueous hydrogen peroxide ($1 \cdot 5$ c.c.) was heated at 70° and volatile material then removed to $100^{\circ} / 20 \mathrm{~mm}$. The residue in chloroform ($5 \mathrm{c} . \mathrm{c}$.) was treated with potassium

Base \dagger	M. p.	Crystal form	Formula or lit. m. p.	Found (\%)			Required (\%)		
				C	H	N	C	H	N
$3 \mathrm{PyCO}_{2} \mathrm{Pr}^{\text {n }}$	129-130 ${ }^{\circ}$	-	129.5-130 ${ }^{\text {a }}$	-	-	-	-	-	
$3 \mathrm{PyO} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{\text {n }}$	91.5-92	prisms	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{10} \mathrm{~N}_{4}$	44-2	$3 \cdot 3$	$13 \cdot 8$	$43 \cdot 9$	$3 \cdot 4$	13.7
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{\text {i }}$	145.5	rhombs	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{9} \mathrm{~N}_{4}$	$46 \cdot 1$	$3 \cdot 6$	$14 \cdot 3$	45•7	$3 \cdot 6$	$14 \cdot 2$
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {n }}$	113-114	-	$113 \cdot 5-114^{a}$						
$3 \mathrm{PyO} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {a }}$	$84-85 \cdot 5$	needles	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{10} \mathrm{~N}_{4}$	$45 \cdot 3$	$3 \cdot 7$	$13 \cdot 3$	$45 \cdot 3$	$3 \cdot 8$	$13 \cdot 2$
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{1}$	124	needles	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{~N}_{4}$	$47 \cdot 2$	$3 \cdot 8$		$47 \cdot 1$	$3 \cdot 9$	
$3 \mathrm{PyO} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{1}$	90	prisms	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{10} \mathrm{~N}_{4}$	$45 \cdot 7$	$3 \cdot 9$	13.5	$45 \cdot 3$	3.8	$13 \cdot 2$
$3 \mathrm{Py} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{8}$	99.5-100.5	needles	$\mathrm{C}_{16} \mathrm{C}_{6} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{~N}_{4}{ }^{4}$	$47 \cdot 0$	$3 \cdot 9$	13.7	47-1	$3 \cdot 9$	13.7
$3 \mathrm{PyO} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {8 }}$	94.5- 95.5	rhombs	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{10}$	$45 \cdot 3$	$3 \cdot 7$	12.9	$45 \cdot 3$	3.8	$13 \cdot 2$
3Py ${ }^{\text {CH: }}$: $\mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{\text {n }}$	128-128.5	prisms	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{~N}$	$48 \cdot 6$	$3 \cdot 9$	13.0	$48 \cdot 6$	3.8	$13 \cdot 3$
$3 \mathrm{Py} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\mathbf{n}}$	100	rods	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{9} \mathrm{~N}_{4}^{4}$	$49 \cdot 9$	$4 \cdot 2$	$13 \cdot 3$	$49 \cdot 8$	$4 \cdot 2$	$12 \cdot 9$
$3 \mathrm{PyO} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{\text {n }}$	109-110	rhombs	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{10} \mathrm{~N}_{4} \\ & \left(\mathrm{C}_{30} \mathrm{H}_{10} \mathrm{~N}_{4}\right. \end{aligned}$	$47 \cdot 8$	3.8	$12 \cdot 8$	$48 \cdot 0$	$4 \cdot 0$	$12 \cdot 4$
$3 \mathrm{PyO} \cdot \mathrm{Me}$	149-151	plates	$\left\{\begin{array}{l} 138-139^{4} \\ 141-143{ }^{c} \end{array}\right.$	$42 \cdot 9$	$3 \cdot 0$	16.2	$42 \cdot 6$	$3 \cdot 0$	$16 \cdot 6$
$3 \mathrm{PyO} \cdot \mathrm{OMe}$	155-156	needles	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{9} \mathrm{~N}_{4}$	41-1	$3 \cdot 0$	$15 \cdot 6$	$40 \cdot 7$	2.8	$15 \cdot 8$
3PyO-OEt ...	125-125.5	needles	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{9} \mathrm{~N}_{4}$	$43 \cdot 0$	$3 \cdot 4$	14.9	$42 \cdot 5$	3.3	$15 \cdot 2$

Table 5. Picrates.
\dagger 3Py indicates 3 -substituted pyridine ring, 3 PyO indicates 3 -substituted pyridine 1 -oxide ring.
${ }^{a}$ Footnote a of Table 3. ${ }^{b}$ Bockelheide and Linn, J. Amer. Chem. Soc., 1954, 76, 1290. ${ }^{\text {c Foot- }}$ note f of Table 4.
carbonate (2 g .) and the oxide recovered from the filtered solution by evaporation. Details are recorded in Table 4. 3-Ethoxy-, m. p. $85-86^{\circ}$, b. p. 175° (bath) $/ 0.05 \mathrm{~mm}$. and 3-methoxypyridine 1 -oxide, m. p. $100-101^{\circ}$, were prepared by refluxing 3 -chloropyridine 1 -oxide overnight with the corresponding alcoholic sodium alkoxide: they were characterised as picrates (Table 5), prepared in and recrystallised from ethanol.

Part of this work was done during the tenure (by A. R. K.) of an I.C.I. Fellowship.
The Dyson Perrins Laboratory, Oxford.
The University Chemical Laboratory, Cambridge.
[Received, May 15th, 1959.]

[^1]
[^0]: * Parentheses enclose apparent extinction coefficients; square brackets enclose arithmetical means and standard deviations. The position of shoulders and the intensity of shoulders and superimposed bands were not used in the statistical treatment.
 ${ }_{2}$ Part XV, Katritzky, Monro, and Beard, J., 1958, 3721.
 ${ }^{2}$ Katritzky and Hands, $J ., 1958,2195$.
 ${ }^{3}$ Katritzky and Gardner, J., 1958, 2192.
 ${ }^{4}$ Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
 ${ }^{5}$ Katritzky and Lagowski, J., 1958, 4155.
 ${ }^{6}$ Shindo, Chem. Pharm. Bull. Japan, 1958, 6, 117 ; 1956, 4, 460.
 ${ }^{7}$ Katritzky, J., 1958, 4162.
 ${ }^{s}$ Katritzky and Simmons, J., 1959, 2058

[^1]: ${ }^{9}$ Katritzky, J., 1956, 2404.
 ${ }^{10}$ Hands and Katritzky, J., 1958, 1754.
 11 Katritzky and Monro, J., 1958, 150.

